The vaginal bacterial meta-transcriptome

Jean Macklaim mmacklai@uwo.ca

The University of Western Ontario

Advisors:

Dr. Greg Gloor (ggloor@uwo.ca) Dr. Gregor Reid (gregor@uwo.ca)

The vaginal microbiota

Normal

Lactobacilli-dominated

Bacterial vaginosis

Lack of lactobacilli + Gardnerella, Atopobium, Prevotella...

- Bacterial vaginosis (BV) is the most common vaginal disorder of women of child-bearing age:10-29% of women are affected¹
- No single disease-causing microbe, but a shift in the microbial community leading to a dysbiosis
- Malodor, discharge, irritation
- BV leads to increased risk of:
 - Acquisition and transmission of STIs and HIV
 - Urinary tract infections
 - Complications during pregnancy, and pre-term labour

1. Allsworth JE & Peipert JF (2007) Prevalence of bacterial vaginosis: 2001-2004 national health and nutrition examination survey data. Obstetrics & Gynecology 109: 114-120

Ranking the vaginal microbiota

Nugent scoring

 Presence/abundance of *Lactobacillus*, *Gardnerella*, *Mobiluncus* morphotypes on slide

Amsel ("symptoms")

- Discharge
- Maldor
- $_{p}H > 4.5$
- Clue cells

Normal

Bacterial vaginosis

Verhelst, et al. (2005) BMC Microbiology

Hummelen et al. (2010) *PLoS One* Gloor et al. (2010) *PLoS One*

Meta-transcriptomics

Why is the vaginal microbiota a good system for metatranscriptomics?

mapping)

Vaginal bacterial meta-transcriptional profiling

Map sequenced transcripts to reference genomes (Bowtie: colorspace aware)

Compare samples

- 1. DESeq **R** package (negative binomial distribution)
- RPKM (reads per kilobase per millions of mapped reads)

How do the bacterial transcriptional profiles differ during bacterial vaginosis and how does this relate to health outcome?

Collect CDS sequences for vaginal strains (N=90)

Collect CDS sequences for vaginal strains (N=90)

Cluster by 95% seq ID to make nonredundant sequence database (135,201 non-redundant CDS)

Collect CDS sequences for vaginal strains (N=90)

Cluster by 95% seq ID to make nonredundant sequence database (135,201 non-redundant CDS)

> **H** Mapping

₽

Functional assignment/annotation

Collect CDS sequences for vaginal strains (N=90)

Cluster by 95% seq ID to make nonredundant sequence database (135,201 non-redundant CDS)

Functional assignment/annotation

20-55% of raw reads mapped per sample: 11mil to 20mil reads

N4	N30	BV27	BV31
2,528	3,234	5,135	5,992

Number of non-redundant CDS mapped at RPKM ≥ 10

What organisms are present? Map to non-redundant \longrightarrow Choose genomes with abundant cpn60 database*

♥

What organisms are present? Map to non-redundant _____ Choose genomes with abundant cpn60

*Janet Hill lab www.cpndb.ca

2. Variants in mapped transcripts (what strain)

*Janet Hill lab www.cpndb.ca

What organisms are present?

- remainder
- Represents transcriptionally active organisms
- Eight abundant organisms plus 3 BVassociated organisms (*Atopobium vaginae*, Clostridiales BVAB3, *Peptoniphilus lacrimalis*) chosen for organism-specific transcriptome mapping

Mapping outcome

	N4	N30	BV27	BV31
Raw reads	47,634,967	46,943,184	48,832,687	53,655,422
Mapped reads	23,450,946	16,545,092	16,625,363	14,075,880
	(49%)	(35%)	(34%)	(26%)
Unique reads mapped to CDS	10,896,193	8,541,748	8,378,653	5,908,471
	(46%)	(52%)	(50%)	(42%)

- 1-9% of reads mapped to human genome
- Of mapped reads, ~50% are 23s or 5s (incomplete/biased rRNA depletion)
 - Few mapping outside predicted CDS
- The rest are inaccessible in colorspace...

Mapping outcome – 11 reference organisms

Organism	CDS size (bp)	N4	COV	N30	cov	BV27	COV	BV31	cov
Atopobium vaginae	1,224,920	64	0.00	78	0.00	104,298	4.26	10,282	0.42
Clostridiales BVAB3	1,589,129	131	0.00	136	0.00	23,438	0.74	9,206	0.29
Gardnerella vaginalis	1,381,069	1,335	0.05	1,774	0.06	2,482,661	89.88	997,009	36.10
Lactobacillus iners	1,129,392	108,925	4.82	560,553	24.82	1,789,648	79.23	2,644,259	117.07
Lactobacillus crispatus	2,030,618	10,563,439	260.10	7,923,734	195.11	8,731	0.21	1,381,479	34.02
Lactobacillus jensenii	1,445,282	220,576	7.63	52,931	1.83	18,906	0.65	102,993	3.56
Megasphaera	1,541,005	290	0.01	475	0.02	813,353	26.39	81,674	2.65
Peptoniphilus lacrimalis	1,527,734	64	0.00	130	0.00	1,838	0.06	17,387	0.57
Prevotella amnii	2,065,134	1,243	0.03	1,491	0.04	3,080,225	74.58	381,622	9.24
Prevotella disiens	2,515,890	32	0.00	225	0.00	9,640	0.19	69,721	1.39
Prevotella timonensis	2,330,373	94	0.00	221	0.00	45,897	0.98	212,839	4.57
Total mapped reads		10,896,193		8,541,748		8,378,635		5,908,471	

• Uniquely mapped reads

BV organism – Prevotella amnii

CDS with RPKM ≥ 10

- 90% shared between 2 BV samples
- Represents 72% of all CDS in *P. amnii*

- What transcriptionally active genes have a role in BV pathogenesis?
 - Interactions with host
 - Interactions with other members of the biota (contributions to co-occurrence and competitive exclusion)*

* Andrew Fernandes (38)

Conserved *L. iners* gene expression?

more similar

• *L. iners* gene expression in normal biota cluster together as do BV biota

• During BV the gene expression is highly similar despite different biota composition

• *L. iners* cultured in MRS broth **(D)** has a very different profile than *in vivo*

How does *L. iners* gene expression function differ in BV compared to normal?

less similar

L. iners - Normal vaginal conditions

An altered transcriptional profile in L. iners during BV

Lactobacillus crispatus under BV conditions

L. crispatus – functional assignment of DE genes

During BV

• Shift to carbohydrate transport and metabolism and energy production (similar to *L. iners*)

What next?

- Dig deeper!
- Validate with qPCR
- In process of recruiting and collecting more samples
- Use RNA-seq to refine gene predictions and genomic architechture (start and stop positions, operon structure)

Summary

- Possible to get high quality data from clinical samples
- *L. iners* is able to differentially express 10% of its gene complement during BV and shows a shift towards carbohydrate utilization
- Carbohydrate availability driving the population changes?
- Organism- and gene-centric analyses paint a different picture

Acknowledgements

Dr. Greg Gloor

Russ Dickson

Dr. Andrew Fernandes

Kevin Chen Ryan Jung CharlesYin

Dr. Gregor Reid

Kingsley Anukam Jordan Bisanz Ruben Hummelen Roderick MacPhee Amy McMillan Shannon Mifflin

Dr. Wayne Miller Marc Monachese Beth Radford Camilla Urbaniak

Canadian Research & Development Centre for Probiotics

THE RESEARCH INSTITUTE OF LONDON HEALTH SCIENCES CENTRE AND ST. JOSEPH'S HEALTH CARE, LONDON.

Why is vaginal microbiota a good system for metatranscriptomics?

- Relatively low diversity
- Usually 1-4 organisms dominating

- Large phylogenetic separation between organisms (sequence variation for mapping)
- Bacterial enumeration/composition does not tell us the whole story

Method – 16s (V6) community profiling

Studies and samples

	Tanzania	Brazil	Toronto	London (post-menopausal)	London (pre-menopausal)
Cohort	HIV ⁺ with and without BV	<u>Study 1</u> With and without BV <u>Study 2</u> With and without VVC	Pregnant (~28 weeks)	With and without VVA (dryness)	With and without BV
Treatment	Oral metronidzole + Oral probiotic capsule or placeobo	Oral antibiotic/antifungal + Oral probiotic or placebo	Progesterone (prevention of pre- term labour)	None	None
Sampling time points	 Day 0 2 weeks 5 weeks 15 weeks 25 weeks 	 Day 0 (before treatment) Day 28 (after treatment) 	 28 weeks gestation ??	 Day 0 2 weeks 4 weeks 6 weeks 8 weeks 10 weeks 	Single samples
Total no. samples	272	325	69	90	21
				Te	otal vaginal microbiota: 777

VVA – Vulvovaginal atrophy (dryness)

BV – Bacterial vaginosis

VVC – Vulvovaginal candidias (yeast)

Probiotic capsule: Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14

Reduced genome

- Smallest *Lactobacillus* genome sequenced to date (reduced across 13/20 functional categories)
- Highest proportion of genes acquired from foreign sources (via horizontal gene transfer)

HA(%)

0.11

0.11

5.46

0.45

0.21

1.54

COG functional category